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Preface

Exam MAS-I (Modern Actuarial Statistics I) is a relatively new exam which was introduced
in Spring 2018 by the Casualty Actuarial Society (CAS). In Spring 2019, the exam is scheduled for
April 23, 2019 (Tuesday). The registration deadline is March 8, 2019. This exam replaces its
predecessor Exam S (Statistics and Probabilistic Models), which is a short-lived exam offered only
five times, from Fall 2015 to Fall 2017. Exam S, in turn, was developed from the old Exam LC
(Models for Life Contingencies), Exam ST (Models for Stochastic Processes and Statistics), and
Exam 3L (Life Contingencies and Statistics). The introduction of Exam MAS-I is in response to
the discontinuation of Exam C/4 in July 2018, which the CAS sees as an opportunity to revamp
Exam S with a heavier focus on contemporary statistical methods and the addition of statistical
learning as a way to enhance the statistical literacy of property and casualty actuaries in this day
and age. You will considerably sharpen your statistics toolkit as a result of taking (and, with the
use of this study manual, passing!) Exam MAS-I.

Syllabus

The syllabus of Exam MAS-I, available from http://www.casact.org/admissions/syllabus/

ExamMASI.pdf, is extremely broad in scope (that explains the sheer size of this manual!), covering
miscellaneous topics in applied probability, mathematical statistics, statistical modeling and time
series analysis, many of which are new topics not tested in SOA/CAS past exams. As a rough
estimate, you need at least three months of intensive study to master the material in this exam.i

The specific sections of the syllabus along with their approximate weights in the exam are shown
below:

Section Range of Weight
A. Probability Models (Stochastic Processes & Survival Models) 20–35%
B. Statistics 15–30%
C. Extended Linear Models 30–50%
D. Time Series with Constant Variance 10–20%

Compared with the former Exam S, both Sections C and D have enjoyed a heavier weight, from
25–40% to 30–50% and from 5–10% to 10–20%, respectively. Sections A, B, and D are more or
less taken intact from the syllabuses of Exam S, ST, LC, and 3L. As a result, you can find lots of
relevant past exam questions on these three sections. Section C has experienced the biggest change,
with a new textbook on statistical learning added.

iIt is true that one need not master every topic in order to pass this exam.
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Exam Format

Exam MAS-I is a four-hour multiple-choice exam. According to the list of MAS-I frequently asked
questions (http://www.casact.org/cms/files/New_CAS_Exams_MAS_I_and_II_FAQs_1.pdf), the
exam will consist of approximately 35 to 40 questions. However, the Spring 2018 exam and Fall
2018 exam both have 45 questions and you can expect future exams to have 45 questions as well.
Before the start of the exam, there will be a fifteen-minute reading period in which you can silently
read the questions and check the exam booklet for missing or defective pages. However, writing will
not be permitted during this time, neither will the use of calculators.

Given the similarity between Exam MAS-I and Exam S (the syllabus of the latter is available
from http://www.casact.org/admissions/syllabus/ExamS.pdf) in terms of their structure and
topics, we may use Exam S as a rough proxy for Exam MAS-I. The following table shows the
distribution of exam questions from Fall 2015 to Fall 2018, categorized into the four sections as
follows:

Number of Questions
Section 15F 16S 16F 17S 17F 18S 18F
A. Probability Models 13 12 16 15 16 14 14
B. Statistics 17 15 14 13 14 9 11
C. Extended Linear Models 11 15 11 14 12 17 15
D. Time Series with Constant Variance 4 3 4 3 3 5 5
Total 45 45 45 45 45 45 45

You can see that roughly the same number of exam questions were set on Sections A and C,
although Section C is proclaimed to be the most important section (perhaps even the examiners
found it hard to set questions on this section!). To investigate whether such a distribution of
exam questions is consistent with the distribution that the CAS announced in the exam syllabus,
please try Practice Exam 2 Question 22 on page 1327. According to https://www.casact.org/

admissions/passmarks/examMAS-I.pdf and http://www.casact.org/admissions/passmarks/

examS.pdf, the pass marks for Spring 2018, Fall 2017, Spring 2017, Fall 2016, Spring 2016, and
Fall 2015ii were 53, 50, 50.5, 54, 55, and 52.5, respectively, which means that candidates needed
to answer about 26 to 27 out of 45 questions correctly to earn a pass (each question carries 2
points with the total score being 44× 2 = 88 or 45× 2 = 90).

Here are the characteristics of a typical CAS multiple-choice exam:

1. The questions are almost always arranged in the same order as the topics in the exam syllabus,
so Question 1 is very likely a Poisson process question and Question 45 is almost always a
time series question. This implicitly gives you a hint as to which topic an exam question is
testing.

2. A number of exam questions bear a striking resemblance to past CAS exam questions, some-
times even with the same numerical values. For example, Questions 15 and 20 of the Spring
2018 MAS-I exam were direct modifications of Questions 18 and 21 of the Fall 2010 Exam
3L, respectively; only the numerical values differ. This attests to the importance of practicing
numerous past exam problems, an abundance of which are carefully discussed and solved in
this study manual.

iiThe pass mark for the Fall 2018 Exam MAS-I is not yet available when this manual goes in press.
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3. The scope of an exam can be narrow at times with several questions testing the same topic in
much the same way. For example, Questions 43, 44, and 45 of the Fall 2016 Exam S all test
time series forecasting for AR models, and Questions 21, 23, and 24 of the Fall 2017 Exam S
all test the concepts of Type I and II errors.

4. Most answer choices are in the form of ranges, e.g.:

A. Less than 1%

B. At least 1%, but less than 2%

C. At least 2%, but less than 3%

D. At least 3%, but less than 4%

E. At least 4%

If your answer is much lower than the bound indicated by Answer A or much higher than
that suggested by Answer E, do check your calculations. Chances are that you have made
computational mistakes, but this is not definitely the case (sometimes the CAS examiners
themselves made a mistake!).

Note that unlike other multiple-choice exams you took before, a guessing adjustment will be
in place in Exam MAS-I, so unless you can eliminate two or three of the answer choices, it
will be wise of you not to answer questions which you are unsure of by pure guesswork.

What is Special about This Study Manual?

We fully understand that you have an acutely limited amount of time for study and that the exam
syllabus is insanely broad. With this in mind, the overriding objective of this study manual is to
help you grasp the material in Exam MAS-I, which is a new and challenging exam, effectively and
efficiently, and pass it with considerable ease. Here are some of the invaluable features of this manual
for achieving this all-important goal:

• Each chapter and section starts by explicitly stating which learning objectives and outcomes
of the MAS-I exam syllabus we are going to cover, to assure you that we are on track and
hitting the right target.

• The knowledge statements of the syllabus are demystified by precise and concise expositions
synthesized from the syllabus readings, helping you acquire a deep and solid understanding
of the subject matter.

• Formulas and results of utmost importance are boxed for easy identification and memoriza-
tion.

• To succeed in any (actuarial) exam, the importance of practicing a wide variety of non-trivial
problems to sharpen your understanding and to develop proficiency, as always, cannot be
overemphasized. This study manual embraces this learning by doing approach and intersperses
its expositions with more than 500 in-text examples and 780 end-of-chapter/section
problems (the harder ones are labeled as [HARDER!] or [VERY HARD!!]), which are
original or taken from relevant SOA/CAS past exams, all with step-by-step solutions and
problem-solving remarks, to consolidate your understanding and to give you a sense of what
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you can expect to see in the real exam. As you read this manual, skills are honed and
confidence is built. As a general guide, you should study all of the in-text examples with
particular attention paid to recent Exam MAS-I and S questions and work out at least half of
the end-of-chapter/section problems.

• While the focus of this study manual is on exam preparation, we will not shy away from
explaining the meaning of various formulas in the syllabus. The interpretations and insights
provided will foster a genuine understanding of the syllabus material and discourage slavish
memorization. At times, we will present brief derivations with the aim of helping you appreci-
ate the structure of the formulas in question. It is the author’s belief and personal experience
that a solid understanding of the underlying concepts is always conducive to achieving good
exam results.

• Mnemonics and shortcuts are emphasized, so are highlights of important exam items and
common mistakes committed by students.

• Three full-length practice exams updated for the Spring 2019 MAS-I exam syllabus and de-
signed to mimic the real exam conclude this study manual giving you a holistic review of the
syllabus material.

New to the Spring 2019 Edition

• New sections in Chapter 6 (Sections 6.3 and 6.4) are developed in response to the new syllabus
topics on the tail properties of claim severity and coverage modifications.

• Old SOA/CAS exam questions before 2000, which are not easily available nowadays, are added
as appropriate. Despite the seniority of these past exam questions and that different syllabus
texts were used when these exams were offered, they are by no means obsolete and will prove
instrumental in illustrating some less commonly tested concepts in the current syllabus and
consolidating your understanding as you progress along this manual.

• All of the 90 past exam questions from the very recent Spring 2018 and Fall 2018 Exam MAS-
I are inserted into appropriate sections of this manual and carefully discussed and solved.
Variants of some of these exam questions are developed.

• A number of sections have been substantially revised, partly in response to the recent Exam
MAS-I and S papers, e.g., Section 7.3 on maximum likelihood estimation, Section 10.6 on
model diagnostics, Section 11.5 on dimension reduction methods, and Section 15.2 on autore-
gressive models. A number of new examples and end-of-chapter/section problems have been
added. In Bayesian parlance, we learn from experience as life moves on!

• All known typographical errors have been fixed.

Exam Tables

In the exam, you will be supplied with a variety of tables, including:
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• Standard normal distribution table (used throughout this study manual)

You will need this table for values of the standard normal distribution function or standard
normal quantiles, when you work with normally distributed random variables or perform
normal approximation.

• Illustrative Life Table (used mostly in Chapter 4 of this study manual)

You will need this when you are told that mortality of the underlying population follows the
Illustrative Life Table.

• A table of distributions for a number of common continuous and discrete distributions and the
formulas for their moments and other probabilistic quantities (used throughout Parts I and II
of this study manual)

This big table provides a great deal of information about some common as well as non-common
distributions (e.g., inverse exponential, inverse Gaussian, Pareto, Burr, etc.). When an exam
question centers on these distributions and quantities such as their means or variances are
needed, consult this table.

• Quantiles of t-distribution, F -distribution, chi-square distribution (used in Chapters 8, 10, 12
and 13 of this study manual)

These quantiles will be of use when you perform parametric hypothesis tests.

You should download these tables from http://www.casact.org/admissions/syllabus/MASI_

Tables.pdf right away, print out a copy and learn how to locate the relevant entries in these tables
because they will be intensively used during your study as well as in the exam.
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Errata

While we go to great lengths to polish and proofread this manual, some mistakes will inevitably go
unnoticed. The author wishes to apologize in advance for any errors, typographical or otherwise,
and would greatly appreciate it if you could bring them to his attention by sending any errors you
identify to ambrose-lo@ uiowa. edu and c.c. support@ actexmadriver. com . Compliments and
criticisms are also welcome. The author will try his best to respond to any inquiries as soon as
possible and an ongoing errata list will be maintained online at https://sites.google.com/site/
ambroseloyp/publications/MAS-I. Students who report errors will be entered into a quarterly
drawing for a $100 in-store credit.

Ambrose Lo
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Part I

Probability Models
(Stochastic Processes & Survival Models)

1





Chapter 1

Poisson Processes

LEARNING OBJECTIVES

1. Understand and apply the properties of Poisson processes:

• For increments in the homogeneous case

• For interval times in the homogeneous case

• For increments in the non-homogeneous case

• Resulting from special types of events in the Poisson process

• Resulting from sums of independent Poisson processes

Range of weight: 0-5 percent

2. For any Poisson process and the inter-arrival and waiting distributions asso-
ciated with the Poisson process, calculate:

• Expected values

• Variances

• Probabilities

Range of weight: 0-5 percent

3. For a compound Poisson process, calculate moments associated with the
value of the process at a given time.

Range of weight: 0-5 percent

4. Apply the Poisson Process concepts to calculate the hazard function and
related survival model concepts.

• Relationship between hazard rate, probability density function and cu-
mulative distribution function

• Effect of memoryless nature of Poisson distribution on survival time es-
timation

Range of weight: 2-8 percent

3



4 CHAPTER 1. POISSON PROCESSES

Chapter overview: As a prospective P&C actuary, you would be interested in monitoring the number
of insurance claims an insurance company receives as time goes by and how these claims can be
appropriately analyzed by means of sound statistical analysis. In Exam MAS-I, we shall learn one
way of modeling the flow of insurance claims – the Poisson process.

This part of the syllabus has two required readings:

(1) A study note by J.W. Daniel

The study note is precise and concise, introducing main results mostly without proof and
supplementing its exposition with a few simple examples. It is suitable for a first-time intro-
duction to Poisson processes.

(2) The book entitled Introduction to Probability Models by S.M. Ross.

This is a textbook used by a number of college courses on elementary applied probability. It
balances rigor and intuition, and presents the theory of Poisson processes at a level that is
much deeper than that in the study note by Daniel. In particular, it treats the conditional
distribution of the arrival times as well as the interplay between two independent Poisson
processes. A conspicuous feature of this book is its large number of sophisticated examples
and exercises which require a large amount of ingenuity and cannot be done in a reasonable
exam setting. This study manual improves the practicality of the book and rephrases these
otherwise intractable examples in an exam tone.

You can download this book (Eleventh Edition) “legally” from ScienceDirect via the following
link, chapter by chapter, if your university has subscribed to it:

http://www.sciencedirect.com/science/book/9780124079489

You should do so because the book has a number of good exercises which will be solved in full
in this study manual (the questions cannot be reproduced here because of copyright issues).
The exercises had been the theme of some past SOA/CAS examination questions, so you
should not despise these exercises as irrelevant and useless.

The Daniel study note has been on the syllabuses of Exams 3, 3L and ST, whereas Introduction to
Probability Models just entered the syllabus of Exam S in Fall 2015. As a result of the addition of
the latter reading, we expect more complex exam questions on Poisson processes in Exam MAS-I.
In total, expect about 4 questions on the material of the entire chapter.
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1.1. FUNDAMENTAL PROPERTIES 5

1.1 Fundamental Properties

KNOWLEDGE STATEMENTS

1a. Poisson process

1b. Non-homogeneous Poisson process

OPTIONAL SYLLABUS READING(S)

• Ross, Subsections 5.3.1 and 5.3.2

• Daniel, Section 1.1 and Subsection 1.4.1

Definition. By definition, a Poisson process {N(t), t ≥ 0} with rate function (also known as
intensity function) λ(·) i is a stochastic process, namely, a collection of random variables indexed
by time t (in an appropriate unit, e.g., minute, hour, month, year, etc.), satisfying the following
properties:

1. (Counting) N(0) = 0, N(t) is non-decreasing in t and takes non-negative integer values only.

Interpretation: N(t) counts the number of claims which are submitted on or before time t.
Thus N(0) is 0 (we assume that should be no claims before the insurance company starts its
business), N(t) cannot decrease in time and must be integer-valued.

2. (Distribution of increments are Poisson random variables) For s < t, the increment N(t) −
N(s), which counts the number of events in the interval (s, t], is a Poisson random variable
with mean Λ =

∫ t
s
λ(y) dy.

Interpretation: Increments of a Poisson process, as its name suggests, are Poisson random
variables with mean computed by integrating the rate function over the same interval. In
this regard, we can see that the rate function of a Poisson process completely specifies the
distribution of each increment.

3. (Increments are independent) If (s1, t1] and (s2, t2] are non-overlapping intervals, then N(t1)−
N(s1) and N(t2)−N(s2) are independent random variables.

Interpretation: This is the most amazing property of a Poisson process. Its increments not
only follow Poisson distribution, but also are independent on disjoint intervals (e.g., (0, 1)
and (2, 5) are disjoint intervals, so are (3, 4] and (4, 5]). This means that, in this model, the
frequency of claims you received last month has nothing to do with the frequency this month.

In the context of insurance applications, we interpret N(t) as the number of claims that occur on or
before time t. The same interpretation can easily carry over to more general contexts where we are
interested in counting a particular type of event, e.g., the number of customers that enter a store,
the number of cars passing through an intersection, the number of lucky candidates passing Exam
MAS-I, etc.

iThe study note by Daniel simply writes a Poisson process as N in short. While this is a perfectly correct way
of writing, some students may confuse that with a Poisson random variable N . Also, here we write λ(·) with a
parenthesis containing the argument of the function instead of just λ to emphasize that λ(·) is a function.

Copyright © 2018 ACTEX Learning ACTEX Study Manual for CAS Exam MAS-I (Spring 2019 Edition)
Ambrose Lo



6 CHAPTER 1. POISSON PROCESSES

Homogeneous Poisson processes. A Poisson process whose rate function is constant, say
λ(t) = λ for all t ≥ 0, is called a homogeneous Poisson process. In addition to having inde-
pendent increments, a homogeneous Poisson process also possesses stationary increments, meaning
that the distribution of N(t + s) − N(s) depends only on the length of the interval, which is t in
this case, but not on s.

Probability calculations. The second and third properties of a Poisson process allow us to
calculate many probabilistic quantities, such as the probability of a certain number of events, as
well as the expected and variance of the number of events in a particular time interval. These two
properties will be intensively used in exam questions. The following string of past exam questions
serves as excellent illustrations.

RECALL FROM EXAM P/1

Just in case you forgot:

1. The probability mass function of a Poisson random variable X with
parameter λ (a scalar, not a function) is given by

Pr(X = x) =
e−λλx

x!
, x = 0, 1, 2, . . .

The mean and variance of X are both equal to λ.

2. If X1, X2, . . . , Xn are independent Poisson random variables with
respective means λ1, λ2, . . . , λn, then X1 +X2 + · · ·+Xn is also
a Poisson random variable with a mean of λ1 + λ2 + · · · + λn.
In other words, the sum of independent Poisson random variables
is also a Poisson random variable whose mean is the sum of the
individual Poisson means.

Example 1.1.1. (SOA Exam P Sample Question 173: Warm-up question) In a given
region, the number of tornadoes in a one-week period is modeled by a Poisson distribution with
mean 2. The numbers of tornadoes in different weeks are mutually independent.

Calculate the probability that fewer than four tornadoes occur in a three-week period.

A. 0.13

B. 0.15

C. 0.29

D. 0.43

E. 0.86

Ambrose’s comments: This is not even a Poisson process question. It simply reminds you of
how probabilities for a Poisson random variable are typically calculated.
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1.1. FUNDAMENTAL PROPERTIES 7

Solution. We are interested in Pr(N1 + N2 + N3 < 4), where Ni is the number of tornadoes in
the ith week for i = 1, 2, 3. As N1 + N2 + N3 is also a Poisson random variable with a mean of
3(2) = 6, we have

Pr(N1 +N2 +N3 < 4) =
3∑
i=0

Pr(N1 +N2 +N3 = i)

= e−6

(
1 + 6 +

62

2!
+

63

3!

)
= 0.1512 . (Answer: B)

Example 1.1.2. (CAS Exam MAS-I Spring 2018 Question 3: Probability – I) The
number of cars passing through the Lexington Tunnel follows a Poisson process with rate:

λ(t) =


16 + 2.5t for 0 < t ≤ 8

52− 2t for 8 < t ≤ 12

−20 + 4t for 12 < t ≤ 18

160− 6t for 18 < t ≤ 24

Calculate the probability that exactly 50 cars pass through the tunnel between times t = 11
and t = 13.

A. Less than 0.01

B. At least 0.01, but less than 0.02

C. At least 0.02, but less than 0.03

D. At least 0.03, but less than 0.04

E. At least 0.04

Solution. The number of cars between t = 11 and t = 13 is a Poisson random variable with
parameter ∫ 13

11

λ(t) dt =

∫ 12

11

(52− 2t) dt+

∫ 13

12

(−20 + 4t) dt

= [52− (122 − 112)] + [−20 + 2(132 − 122)]

= 59.

Hence the probability of exactly 50 cars between t = 11 and t = 13 is

e−595950

50!
= 0.0273 . (Answer: C)
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8 CHAPTER 1. POISSON PROCESSES

Example 1.1.3. (CAS Exam 3L Spring 2010 Question 12: Probability – II) Downloads
of a song on a musician’s Web site follow a heterogeneous Poisson process with the following
Poisson rate function:

λ(t) = e−0.25t

Calculate the probability that there will be more than two downloads of this song between times
t = 1 and t = 5.

A. Less than 29%

B. At least 29%, but less than 30%

C. At least 30%, but less than 31%

D. At least 31%, but less than 32%

E. At least 32%

Solution. Because N(5)−N(1) is a Poisson random variable with parameter∫ 5

1

λ(t) dt =

∫ 5

1

e−0.25t dt =
e−0.25(1) − e−0.25(5)

0.25
= 1.969184,

the required probability equals

Pr(N(5)−N(1) > 2)

= 1− Pr(N(5)−N(1) = 0)− Pr(N(5)−N(1) = 1)− Pr(N(5)−N(1) = 2)

= 1− e−1.969184

(
1 + 1.969184 +

1.9691842

2

)
= 0.3150 . (Answer: D)

Example 1.1.4. (CAS Exam S Spring 2016 Question 3: Probability – III) You are
given:

• The number of claims, N(t), follows a Poisson process with intensity:

λ(t) =
1

2
t, 0 < t < 5

λ(t) =
1

4
t, t ≥ 5

• By time t = 4, 15 claims have occurred.

Calculate the probability that exactly 16 claims will have occurred by time t = 6.

A. Less than 0.075
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1.1. FUNDAMENTAL PROPERTIES 9

B. At least 0.075, but less than 0.125

C. At least 0.125, but less than 0.175

D. At least 0.175, but less than 0.225

E. At least 0.225

Solution. The number of claims between t = 4 and t = 6 is a Poisson random variable with
mean ∫ 5

4

1

2
t dt+

∫ 6

5

1

4
t dt =

52 − 42

2(2)
+

62 − 52

4(2)
= 3.625.

The probability of having exactly one(= 16−15) claim between t = 4 and t = 6 is 3.625e−3.625 =
0.0966 . (Answer: B)

Remark. More formally, the probability we seek is

Pr(N(6) = 16|N(4) = 15) = Pr(N(6)−N(4) = 1|N(4) = 15)

= Pr(N(6)−N(4) = 1)

due to the property of independent increments.

Example 1.1.5. (CAS Exam 3L Spring 2012 Question 9: Expected value from now
until forever) Claims reported for a group of policies follow a non-homogeneous Poisson process
with rate function:

λ(t) = 100/(1 + t)3, where t is the time (in years) after January 1, 2011.

Calculate the expected number of claims reported after January 1, 2011 for this group of policies.

A. Less than 45

B. At least 45, but less than 55

C. At least 55, but less than 65

D. At least 65, but less than 75

E. At least 75

Solution. We are interested in N(∞) = limt→∞N(t), which is a Poisson random variable with
mean ∫ ∞

0

λ(t) dt =

∫ ∞
0

100

(1 + t)3
dt = 100

[
− 1

2(1 + t)2

]∞
0

= 50 . (Answer: B)
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10 CHAPTER 1. POISSON PROCESSES

Example 1.1.6. (CAS Exam 3L Spring 2013 Question 9: Variance) You are given the
following:

• An actuary takes a vacation where he will not have access to email for eight days.

• While he is away, emails arrive in the actuary’s inbox following a non-homogeneous Poisson
process where

λ(t) = 8t− t2 for 0 ≤ t ≤ 8. (t is in days)

Calculate the variance of the number of emails received by the actuary during this trip.

A. Less than 60

B. At least 60, but less than 70

C. At least 70, but less than 80

D. At least 80, but less than 90

E. At least 90

Solution. The trip of the actuary lasts for 8 days, during which the number of emails is a Poisson
random variable with variance (same as the mean)∫ 8

0

(8t− t2) dt =

[
4t2 − t3

3

]8

0

= 85.3333 . (Answer: D)

Example 1.1.7. (CAS Exam ST Fall 2015 Question 1: Calculation of homogeneous
Poisson intensity) For two Poisson processes, N1 and N2, you are given:

• N1 has intensity function λ1(t) =

{
2t for 0 < t ≤ 1

t3 for t > 1

• N2 is a homogeneous Poisson process.

• Var[N1(3)] = 4Var[N2(3)]

Calculate the intensity of N2 at t = 3.

A. Less than 1

B. At least 1, but less than 3

C. At least 3, but less than 5

D. At least 5, but less than 7

E. At least 7
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1.1. FUNDAMENTAL PROPERTIES 11

Solution. Note that N1(3) has a mean and variance equal to∫ 3

0

λ1(t) dt =

∫ 1

0

2t dt+

∫ 3

1

t3 dt = [t2]10 +

[
t4

4

]3

1

= 1 +
34 − 14

4
= 21,

while N2(3) has a mean and variance equal to 3λ2, where λ2 is the constant intensity of N2. As
Var[N1(3)] = 4Var[N2(3)], we have 21 = 4(3λ2), so λ2 = 21/12 = 1.75 . (Answer: B)

Probabilities and expectations involving overlapping intervals. A harder exam question
may ask that you determine probabilities and expected values for increments on overlapping inter-
vals. The key step to calculate these quantities lies in rewriting the them in terms of increments on
non-overlapping intervals, which are independent according to the definition of a Poisson process.

Example 1.1.8. (Probability for overlapping increments – I) The number of calls received
in a telephone exchange follow a homogeneous Poisson process with a rate of 30 per hour.

Calculate the probability that there are exactly 2 calls in the first ten minutes and exactly
5 calls in the first twenty minutes.

A. Less than 0.01

B. At least 0.01, but less than 0.02

C. At least 0.02, but less than 0.03

D. At least 0.03, but less than 0.04

E. At least 0.04

Solution. When time is measured in hours, the required probability is

Pr(N(1/6) = 2, N(1/3) = 5) = Pr(N(1/6) = 2, N(1/3)−N(1/6) = 3),

which can be factored, because of independence, into

Pr(N(1/6) = 2) Pr(N(1/3)−N(1/6) = 3) =
e−30/6(30/6)2

2!
× e−30/6(30/6)3

3!

= 0.0118 . (Answer: B)

Example 1.1.9. (Probability for overlapping increments – II) Customers arrive at a
post office in accordance with a Poisson process with a rate of 5 per hour. The post office opens
at 9:00 am.

Calculate the probability that only one customer arrives before 9:20 am and ten customers
arrive before 11:20 am.
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12 CHAPTER 1. POISSON PROCESSES

A. Less than 0.01

B. At least 0.01, but less than 0.02

C. At least 0.02, but less than 0.03

D. At least 0.03, but less than 0.04

E. At least 0.04

Solution. The required probability is

Pr (N(1/3) = 1, N(7/3) = 10) = Pr (N(1/3) = 1, N(7/3)−N(1/3) = 9)

= Pr (N(1/3) = 1) Pr (N(7/3)−N(1/3) = 9)

= e−5/3

(
5

3

)
× e−5(2) [5(2)]9

9!

= 0.0394 . (Answer: D)

Example 1.1.10. (CAS Exam MAS-I Fall 2018 Question 1: Expectation of a product)
Insurance claims are made according to a Poisson process {N(t), t ≥ 0} with rate λ = 1.

Calculate E[N(1) ∗N(2)].

A. Less than 1.5

B. At least 1.5, but less than 2.5

C. At least 2.5, but less than 3.5

D. At least 3.5, but less than 4.5

E. At least 4.5

Solution. Writing N(2) as the telescoping sum N(2) = (N(2)−N(1)) +N(1), we get

E[N(1)N(2)] = E{N(1)× [(N(2)−N(1)) +N(1)]}
= E[N(1)(N(2)−N(1))] + E[N(1)2].

By the independent increments property, N(2)−N(1) is independent of N(1), so

E[N(1)(N(2)−N(1))] = E[N(1)]E[N(2)−N(1)] = 1× (2− 1) = 1.

Moreover,
E[N(1)2] = Var[N(1)] + E[N(1)]2 = 1 + 12 = 2.

Finally,
E[N(1)N(2)] = 1 + 2 = 3 . (Answer: C)

Remark. Of course, E[N(1)N(2)] 6= E[N(1)]E[N(2)] = 2, which corresponds to Answer B.
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1.1. FUNDAMENTAL PROPERTIES 13

Conditional distribution of N(t) given N(s) for s ≤ t. Suppose that we know the value of
the Poisson process at one time point s with N(s) = m, and we wish to study the probabilistic
behavior of the Poisson process at a later time point t with s ≤ t. Then N(t) turns out to be a
translated Poisson random variable in the sense that it has the same distribution as the sum of a
Poisson random variable and a constant. To see this, let’s write N(t) as

N(t) = [N(t)−N(s)] +N(s).

The second term N(s) is known to be m, while the first term, owing to the property of independent
increments of a Poisson process, is a Poisson random variable, say M , whose distribution does not
depend on the value of m. Therefore, we have the distributional representation

[N(t)|N(s) = m]
d
= M +m, s ≤ t,

where “
d
=” means equality in distribution. This result allows us to answer questions about many

probabilistic quantities associated with N(t) when the value of N(s) is given.

Example 1.1.11. (CAS Exam S Fall 2017 Question 3: Conditional probability) You
are given:

• A Poisson process N has a rate function: λ(t) = 3t2

• You’ve already observed 50 events by time t = 2.1.

Calculate the conditional probability, Pr[N(3) = 68 | N(2.1) = 50].

A. Less than 5%

B. At least 5%, but less than 10%

C. At least 10%, but less than 15%

D. At least 15%, but less than 20%

E. At least 20%

Solution. The conditional probability can be determined as

Pr[N(3) = 68 | N(2.1) = 50] = Pr[N(3)−N(2.1) = 18 | N(2.1) = 50]

= Pr[N(3)−N(2.1) = 18],

where N(3) − N(2.1) is a Poisson random variable with mean
∫ 3

2.1
3t2 dt = 33 − 2.13 = 17.739.

The final answer is
e−17.73917.73918

18!
= 0.0934 . (Answer: B)
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14 CHAPTER 1. POISSON PROCESSES

Example 1.1.12. (CAS Exam 3L Fall 2010 Question 11: Conditional variance) You
are given the following information:

• A Poisson process N has a rate function λ(t) = 3t2.

• You have observed 50 events by time t = 2.1.

Calculate Var[N(3) | N(2.1) = 50].

A. Less than 10

B. At least 10, but less than 20

C. At least 20, but less than 30

D. At least 30, but less than 40

E. At least 40

Solution. Conditional on N(2.1) = 50, N(3) has the same distribution as M + 50, where M is
a Poisson random variable with mean and variance∫ 3

2.1

λ(t) dt =

∫ 3

2.1

3t2 dt = t3
∣∣3
2.1

= 17.739.

Hence

Var[N(3) | N(2.1) = 50] = Var(M + 50) = Var(M) = 17.739 (Answer: B).

Normal approximation. For more cumbersome probabilities such as Pr (N(t) > c) with c being
a large number, exact calculations can be tedious and normal approximation may be used. That is,
we approximate N(t) by a normal random variable with the same mean and variance, and instead
calculate the probability of the same event for this normal random variable using the standard
normal distribution table you have in the exam. Because the distribution of N(t) is discrete, and a
continuous distribution (i.e., normal) is used to approximate this discrete distribution, a continuity
correction should be made.
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1.1. FUNDAMENTAL PROPERTIES 15

Recall - Continuity correction

Let X be a random variable taking values in the set of integers {0,±1,±2, . . .}
and N is a normal random variable having the same mean and variance as
X. The following shows how various probabilities are approximated using the
normal approximation with continuity correction: (c is an integer)

Probability of Interest Approximant
Pr(X ≤ c) ≈ Pr(N ≤ c+ 0.5)
Pr(X < c) ≈ Pr(N ≤ c− 0.5)
Pr(X ≥ c) ≈ Pr(N ≥ c− 0.5)
Pr(X > c) ≈ Pr(N > c+ 0.5)

In the second column, it does not matter whether we take strict or weak
inequalities because N is a continuous random variable. In other words, we
may replace “≤” by “<” and “≥” by “>”.

Throughout this study manual, we denote the distribution function of the
standard normal distribution by Φ(·). (You may have used N(·) in Exam
MFE/IFM/3F)

Example 1.1.13. (CAS Exam 3L Spring 2008 Question 11: Normal approximation)
A customer service call center operates from 9:00 AM to 5:00 PM. The number of calls received
by the call center follows a Poisson process whose rate function varies according to the time of
day, as follows:

Time of Day Call Rate (per hour)
9:00 AM to 12:00 PM 30
12:00 PM to 1 :00 PM 10
1:00 PM to 3:00 PM 25
3:00 PM to 5:00 PM 30

Using a normal approximation, what is the probability that the number of calls received
from 9:00AM to 1:00PM exceeds the number of calls received from 1:00PM to 5:00PM?

A. Less than 10%

B. At least 10%, but less than 20%

C. At least 20%, but less than 30%

D. At least 30%, but less than 40%

E. At least 40%

Solution. The number of calls received from 9:00AM to 1:00PM is a Poisson random variable
N1 with parameter 30(3) + 10(1) = 100, while the number of calls received from 1:00PM to
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16 CHAPTER 1. POISSON PROCESSES

5:00PM is a Poisson random variable N2 with parameter 25(2) + 30(2) = 110. Because N1 and
N2 are independent,

E[N1 −N2] = E[N1]− E[N2] = 100− 110 = −10,

and
Var(N1 −N2) = Var(N1) + Var(N2) = 100 + 110 = 210.

Using the normal approximation with continuity correction, we have

Pr(N1 > N2) = Pr(N1 −N2 > 0) ≈ Pr

 N(−10, 210)︸ ︷︷ ︸
a normal r.v. with mean
−10 and variance 210

> 0.5

 ,

which, upon standardization, equals

Pr

(
N(0, 1) >

0.5− (−10)√
210

)
= 1− Φ(0.72) = 1− 0.7642 = 0.2358 . (Answer: C)

Remark. If you do not use continuity correction, you will calculate

Pr(N1 > N2) ≈ Pr (N(−10, 210) > 0) = 1− Φ

(
0− (−10)√

210

)
= 1− Φ(0.69)︸ ︷︷ ︸

0.7549

= 0.2451,

in which case you will also end up with Answer C.

[HARDER!] Conditional distribution of N(s) given N(t) with s ≤ t. We have learned
that conditional on N(s), the distribution of N(t), where 0 ≤ s ≤ t, is that of a translated Poisson
distribution. What about the conditional distribution of N(s) given N(t)? To answer this question,
we consider, for k = 0, 1, . . . , n,

Pr (N(s) = k|N(t) = n) =
Pr (N(s) = k,N(t) = n)

Pr (N(t) = n)
=

Pr (N(s) = k,N(t)−N(s) = n− k)

Pr (N(t) = n)
.

Because a (homogeneous or non-homogeneous) Poisson process possesses independent increments,
the preceding probability can be further written as

Pr (N(s) = k|N(t) = n) =
Pr (N(s) = k) Pr (N(t)−N(s) = n− k)

Pr (N(t) = n)

=
e−m(s)[m(s)]k/k!× e−[m(t)−m(s)][m(t)−m(s)]n−k/(n− k)!

e−m(t)[m(t)]n/n!

=
n!

k!(n− k)!

(
m(s)

m(t)

)k (
1− m(s)

m(t)

)n−k
=

(
n

k

)(
m(s)

m(t)

)k (
1− m(s)

m(t)

)n−k
.
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1.1. FUNDAMENTAL PROPERTIES 17

In other words, given N(t) = n, N(s) is a binomial random variable with parameters n and
m(s)/m(t). In particular, for a homogeneous Poisson process with rate λ, i.e., m(t) = λt for
t ≥ 0, then

N(s)|N(t) = n ∼ Binomial
(
n,
s

t

)
,

which is free of λ.

Example 1.1.14. (CAS Exam MAS-I Spring 2018 Question 2: Probability for N(s)
given N(t) with s ≤ t) Insurance claims are made according to a Poisson process with rate
λ.

Calculate the probability that exactly 3 claims were made by time t = 1, given that exactly
6 claims are made by time t = 2.

A. Less than 0.3

B. At least 0.3, but less than 0.4

C. At least 0.4, but less than 0.5

D. At least 0.5, but less than 0.6

E. At least 0.6

Solution. Conditional on N(2) = 6, N(1) is a binomial random variable with parameters 6 and
1/2, so

Pr[N(1) = 3|N(2) = 6] =

(
6

3

)(
1

2

)3(
1− 1

2

)3

= 0.3125 . (Answer: B)

Remark. We do not need the value of λ to get the answer.
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Problems

Problem 1.1.1. (SOA Exam P Sample Question 280: Conditional Poisson mean) The
number of burglaries occurring on Burlington Street during a one-year period is Poisson distributed
with mean 1.

Calculate the expected number of burglaries on Burlington Street in a one-year period, given
that there are at least two burglaries.

A. 0.63

B. 2.39

C. 2.54

D. 3.00

E. 3.78

Solution. Let N be the number of burglaries on Burlington Street in a specified one-year period.
Given that there are at least two burglaries, the expected value of N is

E[N |N ≥ 2] =

∑∞
n=2 nPr(N = n)

Pr(N ≥ 2)

=
E[N ]− 1× Pr(N = 1)

1− Pr(N = 0)− Pr(N = 1)

=
1− e−1

1− e−1 − e−1

= 2.3922 . (Answer: B)

Problem 1.1.2. (CAS Exam 3 Fall 2006 Question 26: True-of-false questions) Which of
the following is/are true?

1. A counting process is said to possess independent increments if the number of events that
occur between time s and t is independent of the number of events that occur between time
s and t+ u for all u > 0.

2. All Poisson processes have stationary and independent increments.

3. The assumption of stationary and independent increments is essentially equivalent to asserting
that at any point in time the process probabilistically restarts itself.

A. 1 only

B. 2 only

C. 3 only

D. 1 and 2 only

E. 2 and 3 only
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1.1. FUNDAMENTAL PROPERTIES 19

Solution. Only 3. is correct. (Answer: C)

1. This would be true if the second s is changed to t.

2. A non-homogeneous Poisson process does not have stationary increments in general.

Problem 1.1.3. (CAS Exam 3L Fall 2013 Question 9: Polynomial intensity function)
You are given that claim counts follow a non-homogeneous Poisson Process with λ(t) = 30t2 + t3.

Calculate the probability of at least two claims between time 0.2 and 0.3.

A. Less than 1%

B. At least 1%, but less than 2%

C. At least 2%, but less than 3%

D. At least 3%, but less than 4%

E. At least 4%

Solution. The number of claims between times 0.2 and 0.3 is a Poisson random variable with
parameter ∫ 0.3

0.2

(30t2 + t3) dt = 10t3 +
t4

4

∣∣∣∣0.3
0.2

= 0.191625.

Hence the probability of at least two claims between times 0.2 and 0.3 is the complement of the
probability of having 0 or 1 claim:

1− Pr(0 claim)− Pr(1 claim) = 1− e−0.191625(1 + 0.191625) = 0.0162 . (Answer: B)

Problem 1.1.4. (CAS Exam 3 Fall 2006 Question 28: Piecewise linear intensity function)
Customers arrive to buy lemonade according to a Poisson distribution with λ(t), where t is time in
hours, as follows:

λ(t) =


2 + 6t 0 ≤ t ≤ 3

20 3 < t ≤ 4

36− 4t 4 < t ≤ 8

At 9:00 a.m., t is 0.
Calculate the number of customers expected to arrive between 10:00 a.m. and 2:00 p.m.

A. Less than 63

B. At least 63, but less than 65

C. At least 65, but less than 67

D. At least 67, but less than 69

E. At least 69
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Solution. The expected number of customers arriving between 10:00 a.m. (t = 1) and 2:00 p.m.
(t = 5) is ∫ 5

1

λ(t) dt =

∫ 3

1

(2 + 6t) dt+

∫ 4

3

20 dt+

∫ 5

4

(36− 4t) dt

= [2t+ 3t2]31 + 20 + [36t− 2t2]54
= 66 . (Answer: C)

Remark. Because the intensity function is piecewise linear, integrating it is the same as calculating
the areas of trapeziums.

Problem 1.1.5. (SOA Course 3 Fall 2004 Question 26: Linear rate function) Customers
arrive at a store at a Poisson rate that increases linearly from 6 per hour at 1:00 p.m. to 9 per hour
at 2:00 p.m.

Calculate the probability that exactly 2 customers arrive between 1:00 p.m. and 2:00 p.m.

A. 0.016

B. 0.018

C. 0.020

D. 0.022

E. 0.024

Solution. Let 1:00 p.m. be time 0 and measure time in hours. The rate function is given by

λ(t) = 6 + 3t, t ≥ 0.

You can check that λ(0) = 6 and λ(1) = 9. The number of customers that arrive between 1:00

p.m. and 2:00 p.m. is a Poisson random variable with a mean of
∫ 1

0
λ(t) dt = 6 + 3/2 = 7.5. The

probability of having 2 customers in the same period is

e−7.5(7.5)2

2!
= 0.0156 . (Answer: A)

Problem 1.1.6. (CAS Exam 3L Fall 2008 Question 1: Expected value) The number of
accidents on a highway from 3:00 PM to 7:00 PM follows a nonhomogeneous Poisson process with
rate function

λ = 4− (t− 2)2, where t is the number of hours since 3:00 PM.

How many more accidents are expected from 4:00 PM to 5:00 PM than from 3:00 PM to 4:00PM?

A. Less than 0.75

B. At least 0.75, but less than 1.25
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C. At least 1.25, but less than 1.75

D. At least 1.75, but less than 2.25

E. At least 2.25

Solution. • The expected number of accidents from 3:00 PM to 4:00PM is∫ 1

0

[4− (t− 2)2] dt =

[
4t− (t− 2)3

3

]1

0

=
5

3
.

• The expected number of accidents from 4:00 PM to 5:00 PM is∫ 2

1

[4− (t− 2)2] dt =

[
4t− (t− 2)3

3

]2

1

=
11

3
.

The difference is 2 . (Answer: D)

Problem 1.1.7. (CAS Exam 3L Fall 2008 Question 2: Probability, homogeneous) You
are given the following:

• Hurricanes occur at a Poisson rate of 1/4 per week during the hurricane season.

• The hurricane season lasts for exactly 15 weeks.

Prior to the next hurricane season, a weather forecaster makes the statement, “There will be at
least three and no more than five hurricanes in the upcoming hurricane season.”

Calculate the probability that this statement will be correct.

A. Less than 54%

B. At least 54%, but less than 56%

C. At least 56%, but less than 58%

D. At least 58%, but less than 60%

E. At least 60%

Solution. Note that N(15), the number of hurricanes during the 15-week hurricane season, is a
Poisson random variable with a mean of 15/4 = 3.75. The probability that the statement will be
correct is

Pr (3 ≤ N(15) ≤ 5) = e−3.75

(
3.753

3!
+

3.754

4!
+

3.755

5!

)
= 0.5458 . (Answer: B)

Problem 1.1.8. (CAS Exam 3L Spring 2008 Question 10: Probability, non-homogeneous)
Car accidents follow a Poisson process, as described below:

• On Monday and Friday, the expected number of accidents per day is 3.
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• On Tuesday, Wednesday, and Thursday, the expected number of accidents per day is 4.

• On Saturday and Sunday, the expected number of accidents per day is 1.

Calculate the probability that exactly 18 accidents occur in a week.

A. Less than .06

B. At least .06 but less than .07

C. At least .07 but less than .08

D. At least .08 but less than .09

E. At least .09

Solution. The total number of accidents in a week is a Poisson random variable with a mean of
3(2) + 4(3) + 1(2) = 20, so the probability of having exactly 18 accidents in a week is

e−202018

18!
= 0.0844 . (Answer: D)

Problem 1.1.9. (CAS Exam 3 Spring 2006 Question 33: Probability, non-homogeneous)
While on vacation, an actuarial student sets out to photograph a Jackalope and a Snipe, two animals
common to the local area. A tourist information booth informs the student that daily sightings of
Jackalopes and Snipes follow independent Poisson processes with intensity parameters:

λJ(t) =
t1/3

5
for Jackalopes

λS(t) =
t1/2

10
for Snipes

where: 0 ≤ t ≤ 24 and t is the number of hours past midnight
If the student takes photographs between 1 pm and 5 pm, calculate the probability that he will

take at least 1 photograph of each animal.

A. Less than 0.45

B. At least 0.45, but less than 0.60

C. At least 0.60, but less than 0.75

D. At least 0.75, but less than 0.90

E. At least 0.90

Solution. The number of Jackalopes and Snipes between 1 pm and 5 pm are Poisson random
variables with respective means

1

5

∫ 17

13

t1/3 dt =
3

4(5)
(174/3 − 134/3) = 1.971665
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and
1

10

∫ 17

13

t1/2 dt =
2

3(10)
(173/2 − 133/2) = 1.548042.

Because the two Poisson processes are independent (note: here we are not using the property of
independent increments),

Pr (NJ(17)−NJ(13) ≥ 1, NS(17)−NS(13) ≥ 1)

= Pr (NJ(17)−NJ(13) ≥ 1) Pr (NS(17)−NS(13) ≥ 1)

= [1− Pr (NJ(17)−NJ(13) = 0)] [1− Pr (NS(17)−NS(13) = 0)]

= (1− e−1.971665)(1− e−1.548042)

= 0.6777 . (Answer: C)

Problem 1.1.10. (CAS Exam 3 Fall 2005 Question 26: Probability, non-homogeneous)
The number of reindeer injuries on December 24 follows a Poisson process with intensity function:

λ(t) = (t/12)1/2 0 ≤ t ≤ 24, where t is measured in hours

Calculate the probability that no reindeer will be injured during the last hour of the day.

A. Less than 30%

B. At least 30%, but less than 40%

C. At least 40%, but less than 50%

D. At least 50%, but less than 60%

E. At least 60%

Solution. We need

Pr (N(24)−N(23) = 0) = exp

[
−
∫ 24

23

(t/12)1/2 dt

]
= exp

[
− 2

3(12)1/2
(243/2 − 233/2)

]
= 0.24675 . (Answer: A)

Problem 1.1.11. [HARDER!] (Rate function mimics the normal density function) You
are given that claim counts follow a non-homogeneous Poisson process with intensity function λ(t) =
e−t

2/4.
Calculate the probability of at least two claims between time 1 and time 2.

A. Less than 0.10

B. At least 0.10, but less than 0.15

C. At least 0.15, but less than 0.20
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D. At least 0.20, but less than 0.25

E. At least 0.25

Solution. The number of claims between time 1 and time 2 is a Poisson random variable with mean∫ 2

1

λ(t) dt =

∫ 2

1

e−t
2/4 dt.

Note that the integrand resembles the density function of a normal distribution with mean 0 and
variance 2, except that the normalizing constant 1/

√
2π(2) is missing. Hence∫ 2

1

e−t
2/4 dt =

√
2π(2)

∫ 2

1

1√
2π(2)

e−t
2/4 dt

= 2
√
π Pr (1 < N(0, 2) < 2)

= 2
√
π

[
Φ

(
2√
2

)
− Φ

(
1√
2

)]
= 2

√
π[Φ(1.41)− Φ(0.71)]

= 2
√
π(0.9207− 0.7611)

= 0.565767.

Finally, the required probability is

Pr (N(2)−N(1) ≥ 2) = 1− Pr (N(2)−N(1) ≤ 1)

= 1− e−0.565767(1 + 0.565767)

= 0.1108 . (Answer: B)

Problem 1.1.12. (CAS Exam ST Spring 2016 Question 1: Probability for N(s) given
N(t) with s ≤ t – I) You are given that N(t) follows the Poisson process with rate λ = 2.

Calculate Pr[N(2) = 3|N(5) = 7].

A. Less than 0.25

B. At least 0.25, but less than 0.35

C. At least 0.35, but less than 0.45

D. At least 0.45, but less than 0.55

E. At least 0.55

Solution. Conditional on N(5) = 7, N(2) is a binomial random variable with parameters 7 and 2/5,
so

Pr[N(2) = 3|N(5) = 7] =

(
7

3

)(
2

5

)3(
1− 2

5

)4

= 0.290304 . (Answer: B)

Remark. We do not need the value of λ to get the answer.
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Problem 1.1.13. (Probability for N(s) given N(t) for s ≤ t – II) Customers arrive at a
post office in accordance with a Poisson process with a rate of 5 per hour. The post office opens at
9:00 am.

Ten customers have arrived before 11:00 am.
Calculate the probability that only two customers have arrived before 9:30 am.

A. Less than 0.15

B. At least 0.15, but less than 0.20

C. At least 0.20, but less than 0.25

D. At least 0.25, but less than 0.30

E. At least 0.30

Solution. Note that N(0.5)|N(2) = 10 has a binomial distribution with parameters 10 and 0.5/2 =
0.25. The conditional probability that N(0.5) = 2 equals(

10

2

)
0.252(1− 0.25)8 = 0.2816 . (Answer: D)

Problem 1.1.14. [HARDER!] (Mean of a conditional sandwiched Poisson process value)
You are given that {N(t)} is a Poisson process with rate λ = 2.

Calculate the expected value of N(3), conditional on N(2) = 3 and N(5) = 10.

A. Less than 5

B. At least 5, but less than 6

C. At least 6, but less than 7

D. At least 7, but less than 8

E. At least 8

Solution. We are interested in the distribution of the value of a Poisson process at a particular
time point, given the process values at an earlier time as well as a later time. To reduce this
two-condition setting to the one-condition setting involving N(s) given N(t) for s ≤ t, we consider
the translated Poisson process {N2(t)}t≥0 defined by N2(t) := N(2 + t) − N(2). This translated
process looks at the original Poisson process {N(t)} from time 2 (hence the superscript “2”) onward,
but with values translated downward by N(2) units. It is easy to conceive (and can be rigorously
shown) that {N2(t)}t≥0 is indeed a Poisson process (see Exercise 5.35 of Ross). Moreover, because
of independent increments, {N2(t)}t≥0 is independent of N(2). In terms of the translated Poisson
process, N(3) can be written as the telescoping sum

N(3) = [N(3)−N(2)] +N(2) = N2(1) + 3.

As {N(2) = 3, N(5) = 10} = {N(2) = 3, N2(3) = 7}, the conditional distribution of N2(1) is

N2(1) | [N(2) = 3︸ ︷︷ ︸
get rid of this

, N2(3) = 7] ∼ N2(1) | N2(3) = 7 ∼ Bin(7, 1/3).
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Finally, the conditional expected value of N(3) is

E[N(3)|N(2) = 3, N(5) = 10] = 3 + E[N2(1)|N(2) = 3, N2(3) = 7]

= 3 +
7

3

= 5.3333 . (Answer: B)

Remark. In general, for t1 ≤ s ≤ t2 and a non-homogeneous Poisson process with mean value
function m(·), the distribution of N(s) conditional on N(t1) = A and N(t2) = B is

A+ Bin

(
B − A, m(s)−m(t1)

m(t2)−m(t1)

)
.

The conditional expected value is

A+ (B − A)

[
m(s)−m(t1)

m(t2)−m(t1)

]
=

[
m(t2)−m(s)

m(t2)−m(t1)

]
A+

[
m(s)−m(t1)

m(t2)−m(t1)

]
B,

which is a weighted average of A and B.
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1.2 Hazard Rate Function

KNOWLEDGE STATEMENTS

1c. Memoryless property of Exponential and Poisson

1d. Relationship between Exponential and Gamma

4a. Failure time random variables

4b. Cumulative distribution functions

4c. Survival functions

4d. Probability density functions

4e. Hazard functions and relationship to Exponential distribution

4f. Relationships between failure time random variables in the func-
tions above

4g. Greedy algorithms

OPTIONAL SYLLABUS READING(S)

Ross, Section 5.2

In this section, we digress a bit to discuss a technical notion known as the failure rate function
and some specialized results for the exponential distribution which will pave way for the further
study of Poisson processes in the next section.

Failure rate function. We can look at the distribution of a random variable through its proba-
bility function and distribution function, as we usually do in our prior studies. A somewhat more
colorful and sometimes more convenient way to describe the distribution of a random variable is
furnished by the notion of failure rate function, which is defined as follows.

Given a continuousii random variable X with distribution function F , its failure rate function
r(·) (also known as hazard rate function) is defined as the ratio of its probability density function
(p.d.f.) f(·) to its survival function S(·) = 1− F (·):

r(t) =
f(t)

S(t)
=

f(t)

1− F (t)
. (1.2.1)

An exam question expects you to calculate the failure rate function using (1.2.1) for a wide variety
of distributions.

Case 1. If you are given the probability density function f(·), integrate it to obtain the survival
function S(·).

Case 2. You may also be provided with the distribution function F (·). In this case, you can
differentiate it to get back the probability density function. A quicker and alternative
solution results from observing that

r(t) =
f(t)

S(t)
=
− d

dt
S(t)

S(t)
= − d

dt
lnS(t) (1.2.2)

iiFailure rate functions are traditionally defined only for continuous random variables.
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because d ln f(x)/dx = f ′(x)/f(x) for any positive function f with derivative f ′.

These two cases are illustrated by the next two examples.

Example 1.2.1. (CAS Exam 3L Fall 2010 Question 1: Calculating the failure rate
function given the density function) You are given the following density function:

f(t) =
t3

c
for 0 ≤ t ≤ 10.

Calculate the failure rate function at t = 5.

A. Less than 0.035

B. At least 0.035, but less than 0.040

C. At least 0.040, but less than 0.045

D. At least 0.045, but less than 0.050

E. At least 0.050

Solution. The survival function is

S(t) =

∫ 10

t

x3

c
dx =

104 − t4

4c
.

By (1.2.1),

r(5) =
f(5)

1− F (5)
=

53/c

(104 − 54)/4c
=

4

75
= 0.0533 . (Answer: E)

Remark. There is no need to determine the constant c, which will be canceled upon division.

Example 1.2.2. (CAS Exam 3L Spring 2008 Question 15: Calculating the failure
rate function) You are given the following survival function:

S(t) = e−5t7

Calculate r(t), the failure rate function.

A. 5t7

B. 35t6

C. 35t6e−5t7

D. 5t7 ln(35t6)
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1.2. HAZARD RATE FUNCTION 29

E. 35t6e−5t7

1−e−5t7

Solution 1. Using (1.2.2),

r(t) = − d

dt
lnS(t) = − d

dt
(−5t7) = 35t6 . (Answer: B)

Solution 2. Alternatively, by differentiation, the probability density function is

f(t) = − d

dt
S(t) = 35t6e−5t7 , t > 0.

By (1.2.1),

r(t) =
f(t)

S(t)
= 35t6 . (Answer: B)

[MINOR] How to make sense of the failure rate function? For a small dt, we have the
following approximate relationship:

r(t) dt =
f(t) dt

S(t)
≈ Pr(t < X ≤ t+ dt)

S(t)
= Pr(X ≤ t+ dt | X > t).

Therefore, for a very small dt, r(t) dt can be interpreted loosely as the probability that the random
variable X, thought of the failure time of some entity, before “age” t + dt given that he/she/it
survives “age” t. In this regard, r(t) is a measurement of the instantaneous rate of failure. However,
bear in mind that:

Failure rate function itself is never a probability! As such, r(·) is a conditional
probability density function.

As a simple example, consider a man aged 50 whose lifetime random variable has a failure rate
function equal to 0.0044 per year at t = 50. By setting dt to be one day, or 1/365 = 0.002740 year,
we deduce that the approximate probability that the man dies on his 50th birthday (poor guy!) is
0.0044(0.002740) = 1.2× 10−5.

Relationship between failure rate function and other distributional quantities. Using
(1.2.1) or (1.2.2), one can obtain the failure rate function of a certain continuous distribution, as
we did in Examples 1.2.1 and 1.2.2. Conversely, we can also retrieve the underlying distribution
function or survival function from a given failure rate function. The precise formula is given by

S(t) = exp

(
−
∫ t

0

r(s) ds

)
. (1.2.3)

Combining (1.2.1) (or (1.2.2)) and (1.2.3), we conclude that there is a one-to-one correspondence
between the distribution function or survival function of a random variable and its failure rate
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30 CHAPTER 1. POISSON PROCESSES

function, or equivalently, the failure rate function uniquely determines the distribution of a random
variable.

IMPORTANT EXAM ITEM

An exam question expects you to go between the failure rate function, survival
function and probability density function efficiently using (1.2.1), (1.2.2) and
(1.2.3).

Example 1.2.3. (Given r(t), find...) The lifetime of a particular type of a newly purchased
electronic product is modeled by a linear failure rate function given by

r(t) =
1

9
(t+ 2), t ≥ 0.

Calculate the 75th percentile of the lifetime of a new electronic product.

A. Less than 1.5

B. At least 1.5, but less than 2.0

C. At least 2.0, but less than 2.5

D. At least 2.5, but less than 3.0

E. At least 3.0

Solution. By (1.2.3), the survival function of a new electronic product is

S(t) = exp

(
−
∫ t

0

r(s) ds

)
= exp

{
−1

9

[
(s+ 2)2

2

]t
0

}

= exp

{
− 1

18

[
(t+ 2)2 − 22

]}
= exp

[
2

9
− 1

18
(t+ 2)2

]
for t ≥ 0.

The 75th percentile of the lifetime, denoted by t∗, satisfies S(t∗) = 1− 0.75 = 0.25, so we set

exp

[
2

9
− 1

18
(t+ 2)2

]
= 0.25 ⇒ t∗ = 3.3808 . (Answer: E)

Remark. Setting incorrectly S(t∗) = 0.75 would result in t∗ = 1.0296, corresponding to Answer
A.
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[IMPORTANT!] Specialized properties of the exponential distribution. The second fo-
cus of this section is to develop some specialized properties of the exponential distribution, some
of which will be useful to the further study of Poisson processes in the next section. Because the
exponential distribution is a key character in the remainder of this section and arises in many other
parts of Exam MAS-I as well, it pays to recall its simple definition.

RECALL

The probability density function of an exponential random variable X can be
presented in two ways:

1. (Rate parameterization) Using λ as the rate parameter , we may write
the density function as

fX(x) = λe−λx, x ≥ 0.

The mean and variance of X are respectively

E[X] =
1

λ
and Var(X) =

1

λ2
.

Note that the rate of an exponential distribution is simply the reciprocal
of its mean.

Such a rate parameterization of exponential distribution is usually handy
for Poisson process calculations.

2. (Scale parametrization) If θ is the mean of the exponential distribution,
then the probability density function becomes

fX(x) =
1

θ
e−x/θ, x ≥ 0.

The mean and variance of X are respectively

E[X] = θ and Var(X) = θ2.

This is the parameterization you can find in the table of distributions
given in the exam.

It is important that you do not mix these two parameterizations up.

Property 1. Exponential distribution is equivalent to a constant failure rate function: The exponential
distribution is the only continuous distribution having a constant failure rate function.

⇒ If X is exponentially distributed with a rate of λ, then by (1.2.1)

r(t) =
f(t)

S(t)
=
λe−λt

e−λt
= λ for all t ≥ 0.

⇐ Conversely, if the failure rate function r(t) is constant at λ, then by (1.2.3),

S(t) = exp

(
−
∫ t

0

r(s) ds

)
= e−λt,
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which is the survival function of an exponential distribution with a rate of λ.

Example 1.2.4. (CAS Exam MAS-I Spring 2018 Question 5: Comparing two hazard
rates) You are given:

• Computer lifetimes are independent and exponentially distributed with a mean of 24
months.

• Computer I has been functioning properly for 36 months.

• Computer II is a brand new and functioning computer.

Calculate the absolute difference between Computer I’s failure rate and Computer II’s failure
rate.

A. Less than 0.01

B. At least 0.01, but less than 0.02

C. At least 0.02, but less than 0.03

D. At least 0.03, but less than 0.04

E. At least 0.04

Solution. The failure rate is the same no matter whether the computer is brand new or an old
one. Therefore, the absolute difference between Computer I’s failure rate and Computer II’s
failure rate is zero. (Answer: A)

Property 2. [Important!] Memoryless property: Another way to express Property 1 is the memoryless
property (also known as lack of memory property), which says that conditional on X > t for
any t ≥ 0, the translated random variable X − t follows the same distribution as the original
random variable X unconditionally. Symbolically, we can write

X − t | X > t
d
= X.

With X regarded as the lifetime of a certain device, the memoryless property implies that the
propensity for the device to fail from time t onward given that the device has survived time
t is the same as that of a brand-new device – the original device does not “remember” that it
has lived t units. In particular, for any x ≥ 0 and t ≥ 0, we have

Pr(X > x+ t|X > t) = Pr( X − t > x|X > t) = Pr( X > x),

where in the second equality we replace the translated random variable X − t by the original
random variable X and get rid of the conditioning event {X > t}.
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Example 1.2.5. (CAS Exam S Fall 2016 Question 3: Standard application of mem-
oryless property) The time X to wait in line is an exponentially distributed random variable
with mean 5 minutes.

Calculate the probability that the total waiting time will be longer than 30 minutes from
the time that individual arrived in line, given that the wait has already been 20 minutes.

A. Less than 0.1

B. At least 0.1, but less than 0.2

C. At least 0.2, but less than 0.3

D. At least 0.3, but less than 0.4

E. At least 0.4

Solution. By the memoryless property,

Pr(X > 30|X > 20) = Pr(X − 20 > 10|X > 20)

= Pr(X > 10)

= e−10/5

= e−2 = 0.1353 . (Answer: B)

Example 1.2.6. (SOA Exam P Sample Question 270: To find E[X|X < c]) The lifetime
of a machine part is exponentially distributed with a mean of five years.

Calculate the mean lifetime of the part, given that it survives less than ten years.

A. 0.865

B. 1.157

C. 2.568

D. 2.970

E. 3.435

Solution. Let X be the lifetime of the machine part. We are to find E[X|X < 10]. Because
E[X|X > 10] is much easier to find due to the memoryless property, we appeal to the law of
total expectations and relate E[X|X < 10] to E[X|X > 10] via

E[X] = E[X|X < 10] Pr(X < 10) + E[X|X > 10] Pr(X > 10)

5 = E[X|X < 10](1− e−10/5) + (10 + 5)e−10/5

E[X|X < 10] = 3.4348 . (Answer: E)
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The memoryless property admits some amazing and lesser-known extensions:

1. It is possible to replace the reference point t by another independent non-negative random
variable Y (not necessarily exponential), so that

X − Y | X > Y
d
= X,

the right-hand side of which does not depend on Y . As a result, the conditional random
variable X − Y |X > Y is surprisingly independent of Y . An interesting by-product of this
fact is that if X1 and X2 are independent exponential random variables, then

min(X1, X2) and max(X1, X2)−min(X1, X2)

are independentiii random variables. This result is useful even in other parts of Exam MAS-I.

2. The memoryless property can even be extended to multi-dimensions involving several inde-
pendent exponential random variables. Specifically, let X1 and X2 be two exponential random
variables, and Y is another non-negative random variable. If X1, X2 and Y are mutually in-
dependent, then the pair of conditional translated random variables (with Y acting as the
reference point) has the same distribution as the original unconditional pair:

(X1 − Y,X2 − Y︸ ︷︷ ︸
translated by Y

) | (X1 > Y,X2 > Y )
d
= (X1, X2).

As a consequence, for u ≥ 0 and v ≥ 0,

Pr( X1 − Y > u, X2 − Y > v | X1 > Y,X2 > Y ) = Pr( X1 > u, X2 > v)

= Pr(X1 > u) Pr(X2 > v).

These generalized memoryless properties make some complex probabilities and expectations
involving a group of independent exponential random variables easy without the need for
explicit integrations.

Example 1.2.7. (The use of bivariate memoryless property) Let X1, X2 and X3 be inde-
pendent exponential random variables with parameters θ = 10, θ = 20 and θ = 30 respectively.

It is known that X3 is the smallest among X1, X2 and X3.
Calculate the variance of X1 +X2.

A. Less than 350

B. At least 350, but less than 400

C. At least 400, but less than 450

D. At least 450, but less than 500

E. At least 500

iiiOf course, max(X1, X2) and min(X1, X2) themselves are not independent, as min(X1, X2) ≤ max(X1, X2) always.
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Solution. Using the bivariate memoryless property presented above, we have

Var(X1 +X2|X3 = min(X1, X2, X3))

= Var( X1 −X3 + X2 −X3 |X1 > X3, X2 > X3)

= Var( X1 + X2 ).

As X1 and X2 are independent, we further have

Var(X1 +X2|X3 = min(X1, X2, X3)) = Var(X1) + Var(X2) = θ2
1 + θ2

2 = 500 . (Answer: E)

Property 3. Sum of i.i.d. exponential random variables gives rise to a gamma random variable: If
X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) exponential random vari-
ables with a common rate of λiv, then their sum S =

∑n
i=1Xi is a gamma random variable

with parameters α = n and θ = 1/λ (see the table of distributions). This fact will prove
important for the study of event times of a Poisson process in Section 1.3.

Example 1.2.8. (SOA Exam P Sample Question 102: Variance of the sum of i.i.d.
exponential r.v.) A company has two electric generators. The time until failure for each
generator follows an exponential distribution with mean 10. The company will begin using the
second generator immediately after the first one fails.

Calculate the variance of the total time that the generators produce electricity.

A. 10

B. 20

C. 50

D. 100

E. 200

Solution. Let X1 and X2 denote the times that the two generators can operate. Because they
are independent, the variance of the sum is Var(X1 +X2) = Var(X1) + Var(X2) = 2(102) = 200.
(Answer: E)

Property 4. Minimum of independent exponential random variables is also exponential: If X1, X2, . . . , Xn

are independent exponential random variables with respective rates λ1, λ2, . . . , λn, then

min(X1,X2,. . .,Xn) also follows an exponential distribution, with a rate of
∑n

i=1 λi . This

ivIf the exponential rates are different, then it turns out that the distribution of S =
∑n
i=1Xi is a mixture of

gamma distributions.
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can be easily shown, for any t ≥ 0, by

Pr(min(X1, X2, . . . , Xn) > t) = Pr(X1 > t,X2 > t, . . . , Xn > t)
(independence)

= Pr(X1 > t) Pr(X2 > t) · · ·Pr(Xn > t)

= e−λ1t × e−λ2t × · · · × e−λnt

= e−(λ1+λ2+···+λn)t,

which is the survival function of an exponential distribution with a rate of
∑n

i=1 λi.

Example 1.2.9. (SAD STORY! A minimum of exponential random variables in dis-
guise) Donald and Daisy are two ducks born on the same day. They love each other so much
that if one dies, the other will drink a deadly poison immediately to die too.

The natural lifetimes of ducks are independent exponential random variables with mean 2
years.

If Donald and Daisy are to live for a further period of T years until they die together,
calculate the expected value of T .

A. 0.5

B. 1

C. 2

D. 4

E. The answer is not given by A, B, C, or D.

Solution. Denote the natural lifetimes of Donald and Daisy by X1 and X2 respectively, both
of which independently follow the exponential distribution with mean 2 years, or rate 1/2 per
year. As soon as one of Donald and Daisy dies, the other will also die together, so we have
T = min(X1, X2), which is an exponential random variable with rate 1/2 + 1/2 = 1. Therefore,
E[T ] = 1 . (Answer: B)

A prominent, but somewhat surprising fact concerning the minimum of independent exponential
random variables is that min1≤i≤nXi and the rank ordering of the Xi’s are independent. This is a
consequence of the memoryless property: For any ordering Xi1 < Xi2 < · · · < Xin for the Xi’s and
t > 0, we have

Pr

(
Xi1 < Xi2 < · · · < Xin

∣∣∣∣ min
1≤i≤n

Xi > t

)
= Pr (Xi1 − t < Xi2 − t < · · · < Xin − t | Xi > t for all i)

(memoryless)
= Pr(Xi1 < Xi2 < · · · < Xin),

where the last probability is free of t.
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Example 1.2.10. [HARDER!] (Exponential expectations conditional on ordering)
Let X1 and X2 be independent exponential random variables with respective rates λ1 and λ2.

(a) Determine an expression for E[X1|X1 < X2].

A. 1/λ1

B. 1/λ1 + 1/λ2

C. 1/(λ1 + λ2)

D. 1/λ1 + 1/(λ1 + λ2)

E. 1/λ2 + 1/(λ1 + λ2)

Solution. Conditional on X1 < X2, note that X1 equals the minimum of X1 and X2, i.e.,

E[X1|X1 < X2] = E[min(X1, X2)|X1 < X2].

As min(X1, X2) is independent of the ordering of X1 and X2, the preceding conditional
expectation is simply the unconditional expectation:

E[min(X1, X2)|X1 < X2] = E[min(X1, X2)].

Finally, as min(X1, X2) is also an exponential random variable with rate λ1 + λ2, we have

E[min(X1, X2)] =
1

λ1 + λ2

. (Answer: C)

Remark. Conditional on X1 < X2, X1 has the same distribution as min(X1, X2) uncondi-
tionally.

(b) Determine an expression for E[X2|X1 < X2].

A. 1/λ1

B. 1/λ1 + 1/λ2

C. 1/(λ1 + λ2)

D. 1/λ1 + 1/(λ1 + λ2)

E. 1/λ2 + 1/(λ1 + λ2)

Solution. Rewriting X2 as the telescoping sum X2 = X1 + (X2 −X1), we have

E[X2|X1 < X2] = E[X1 + (X2 −X1)|X1 < X2]

= E[X1|X1 < X2] + E[X2 −X1|X1 < X2].

The first conditional expectation has been evaluated in part (a), while the second one can
be dealt with easily by the memoryless property using X1 as the reference point:

E[X2 −X1|X1 < X2] = E[X2] =
1

λ2

.
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In conclusion,

E[X2|X1 < X2] =
1

λ1 + λ2

+
1

λ2

. (Answer: E)

Remark. Note that max(X1, X2) is not independent of the ordering of X1 and X2, so
E[X2|X1 < X2] = E[max(X1, X2)|X1 < X2] = E[max(X1, X2)] is not true.

Example 1.2.11. [HARDER!] (CAS Exam S Spring 2017 Question 6: Conditional
expected value) X and Y are two independent exponential random variables with hazard
rates λX = 2 and λY = 8, respectively.

Calculate the expected value of X, conditional on 1 < X < Y .

A. Less than 1.20

B. At least 1.20, but less than 1.40

C. At least 1.40, but less than 1.60

D. At least 1.60, but less than 1.80

E. At least 1.80

Solution. We are asked to find

E[X|1 < X < Y ] = 1 + E[X − 1|1 < X, 1 < Y,X − 1 < Y − 1].

The bivariate memoryless property says that

(X − 1, Y − 1)|(X > 1, Y > 1)
d
= (X, Y ).

Thus replacing each “X − 1” by “X” and “Y − 1” by “Y ” while getting rid of the conditioning
events {1 < X} and {1 < Y } yields

E
[
X − 1 |1 < X, 1 < Y, X − 1 < Y − 1

]
= E[X|X < Y ]

(Example 1.2.10 (a))
=

1

2 + 8
= 0.1.

The answer is 1 + 0.1 = 1.1 . (Answer: A)

Remark. To find the conditional variance of X, see Problem 1.2.16 on page 56.

Property 5. [Important!] “Exponential race” probabilityv – Probability that one exponential is less than

vThis term can be found on page 96 of Essentials of Stochastic Processes (third edition), by Professor Richard
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another independent exponential random variable: If X1 and X2 are independent exponential
random variables with respective rates λ1 and λ2, then

Pr(X1 < X2) =
rate of X1

rate of X1 + rate of X2

=
λ1

λ1 + λ2

, (1.2.4)

which can be easily remembered by noting that:

• The numerator is the rate of the dominated exponential random variable X1.

• The denominator is the sum of the two exponential rates.

More generally, if X1, X2, . . . , Xn are independent exponential random variables with respec-
tive rate λ1, λ2, . . . , λn, then the probability that Xi is the smallest among the n random
variables, for i = 1, 2, . . . , n, is

Pr (Xi = min(X1, X2, . . . , Xn)) = Pr

Xi < min(X1, . . . , Xi−1, Xi+1, . . . , Xn)︸ ︷︷ ︸
exponential with rate

∑
j 6=i λj (by Property 4)


=

λi
λi +

∑
j 6=i λj

=
λi∑n
j=1 λj

=
rate of Xi

total rate
.

Example 1.2.12. (SOA Exam P Sample Question 90: Simple exponential race proba-
bility) An insurance company sells two types of auto insurance policies: Basic and Deluxe. The
time until the next Basic Policy claim is an exponential random variable with mean two days.
The time until the next Deluxe Policy claim is an independent exponential random variable
with mean three days.

Calculate the probability that the next claim will be a Deluxe Policy claim.

A. 0.172

B. 0.223

C. 0.400

D. 0.487

E. 0.500

Solution. Let X and Y be the time until the next Basic Policy claim and the time until the
next Deluxe Policy claim, respectively. We are to find Pr(Y < X), which, by (1.2.4), equals

1/3
1/3+1/2

= 0.4 . (Answer: C)

Remark. Don’t forget to convert the two exponential means to the exponential rates before using
(1.2.4)!

Durrett. This is not a required text for Exam MAS-I.

Copyright © 2018 ACTEX Learning ACTEX Study Manual for CAS Exam MAS-I (Spring 2019 Edition)
Ambrose Lo



40 CHAPTER 1. POISSON PROCESSES

Example 1.2.13. (CAS Exam S Fall 2016 Question 7: Two groups of non-i.i.d. ex-
ponential random variables) You are given the following information about a watch with 6
different parts:

• There are 3 red wires with expected lifetimes of 50, 75, and 100.

• There are 3 yellow wires with expected lifetimes of 25, 50, and 75.

• The lifetimes of all wires are independent and exponentially distributed.

Calculate the probability that a red wire will break down before a yellow wire.

A. Less than 0.20

B. At least 0.20, but less than 0.25

C. At least 0.25, but less than 0.30

D. At least 0.30, but less than 0.35

E. At least 0.35

Ambrose’s comments: This nice exam problem nicely combines Properties 4 and 5 in one
single question.

Solution. The probability is equivalent to the probability that the minimum of the lifetimes of
the 3 red wires is less than the minimum of the lifetimes of the 3 yellow wires. By Property 4:

• The minimum of the lifetimes of the 3 red wires is exponentially distributed with a rate
of 1/50 + 1/75 + 1/100 = 13/300.

• The minimum of the lifetimes of the 3 yellow wires is exponentially distributed with a rate
of 1/25 + 1/50 + 1/75 = 11/150.

Because the two minimums are independent exponential random variables, it follows from the
“exponential race probability” that the required probability is

red wire fails first︷ ︸︸ ︷
13/300

13/300 + 11/150
=

13

35
= 0.3714 . (Answer: E)

Example 1.2.14. (CAS Exam S Fall 2016 Question 5: Expected completion time) A
call center currently has 2 representatives and 2 interns who can handle customer calls. If all
representatives including interns are currently on a call, an incoming call will be placed on hold
until a representative or intern is available.

You are given the following information:
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